The likelihood that a study will yield statistically significant results depends on the chosen sample size. Surveillance and diagnostic situations that require sample size calculations include certification of disease freedom, estimation of diagnostic accuracy, comparison of diagnostic accuracy, and determining equivalency of test accuracy. Reasons for inadequately sized studies that do not achieve statistical significance include failure to perform sample size calculations, selecting sample size based on convenience, insufficient funding for the study, and inefficient utilization of available funding. Sample sizes are directly dependent on the assumptions used for their calculation. Investigators must first specify the likely values of the parameters that they wish to estimate as their best guess prior to study initiation. They further need to define the desired precision of the estimate and allowable error levels. Type I (alpha) and type II (beta) errors are the errors associated with rejection of the null hypothesis when it is true and the nonrejection of the null hypothesis when it is false (a specific alternative hypothesis is true), respectively. Calculated sample sizes should be increased by the number of animals that are expected to be lost over the course of the study. Free software routines are available to calculate the necessary sample sizes for many surveillance and diagnostic situations. The objectives of the present article are to briefly discuss the statistical theory behind sample size calculations and provide practical tools and instruction for their calculation.
Schmidt SAJ, Lo S, Hollestein LM. Schmidt SAJ, et al. J Invest Dermatol. 2018 Aug;138(8):1678-1682. doi: 10.1016/j.jid.2018.06.165. J Invest Dermatol. 2018. PMID: 30032783 Review.
Tavernier E, Trinquart L, Giraudeau B. Tavernier E, et al. PLoS One. 2016 Jun 30;11(6):e0158604. doi: 10.1371/journal.pone.0158604. eCollection 2016. PLoS One. 2016. PMID: 27362939 Free PMC article.
Hajian-Tilaki K. Hajian-Tilaki K. J Biomed Inform. 2014 Apr;48:193-204. doi: 10.1016/j.jbi.2014.02.013. Epub 2014 Feb 26. J Biomed Inform. 2014. PMID: 24582925
Kang H. Kang H. J Educ Eval Health Prof. 2021;18:17. doi: 10.3352/jeehp.2021.18.17. Epub 2021 Jul 30. J Educ Eval Health Prof. 2021. PMID: 34325496 Free PMC article. Review.
Mascha EJ, Vetter TR. Mascha EJ, et al. Anesth Analg. 2018 Feb;126(2):691-698. doi: 10.1213/ANE.0000000000002741. Anesth Analg. 2018. PMID: 29346210
Polinski MP, Lifgren D, Clayton RD, Warg JV, Pietrak MR, Peterson BC. Polinski MP, et al. Viruses. 2024 Aug 13;16(8):1288. doi: 10.3390/v16081288. Viruses. 2024. PMID: 39205262 Free PMC article.
Kabuuka T, Mulindwa H, Bastos ADS, van Heerden J, Heath L, Fasina FO. Kabuuka T, et al. Animals (Basel). 2023 Dec 24;14(1):71. doi: 10.3390/ani14010071. Animals (Basel). 2023. PMID: 38200802 Free PMC article.
Mwatondo A, Muturi M, Akoko J, Nyamota R, Nthiwa D, Maina J, Omolo J, Gichuhi S, Mureithi MW, Bett B. Mwatondo A, et al. PLoS Negl Trop Dis. 2023 Oct 16;17(10):e0011682. doi: 10.1371/journal.pntd.0011682. eCollection 2023 Oct. PLoS Negl Trop Dis. 2023. PMID: 37844102 Free PMC article.
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. Osemeke OH, et al. Front Vet Sci. 2023 Aug 10;10:1200376. doi: 10.3389/fvets.2023.1200376. eCollection 2023. Front Vet Sci. 2023. PMID: 37635762 Free PMC article.
Bujang MA. Bujang MA. Diagnostics (Basel). 2023 Apr 11;13(8):1390. doi: 10.3390/diagnostics13081390. Diagnostics (Basel). 2023. PMID: 37189491 Free PMC article.